根据新课程标准精神,我们教学的主要任务不再仅仅是积累知识、传授知识而已,更重要的是要发展学生的思维。为此,我们必须在平时的课堂教学活动中,创设有效的思维情境,营造和谐的教学氛围,使教学内容触及学生的情绪和意志领域,诱使学生把学习活动变成自己的精神需要,从而达到培养学生品质,发展学生思维能力的目的。下面结合教学实践,谈谈自己在数学课堂教学中创设思维情境、训练学生思维的几点做法。
一、创设问题情境,训练思维的灵活性
思维的灵活性是指思维活动的灵活程度。它集中表现为能根据问题的具体情况,及时改变观察和理解的角度,揭示本质联系,机智地解决问题。
小学生在学习过程中容易受到思维定势的影响,使思维活动常常受到束缚。如果教师能根据教学内容创设引人入胜的问题情境,引导学生打破常规,克服思维定势,拓宽思维领域,就有可能会获得意想不到的收获。
例如在教学《长方体和正方体体积的应用》时,我就创设了这样一个问题情境,先出示一个长方体玻璃容器,然后把一个钢球浸没在容器内的水中,要学生求出这个钢球的体积。学生兴趣很高,但一时又说不出答案,有学生试探说:“能不能告诉我们球的体积公式?知道了公式,只要找到公式中未知的量,不就可以求出钢球的体积了吗?”听到这话,我马上补充说:“如果不告诉你们球的体积公式,能求这个钢球的体积吗?”学生一时被这问题噎住了——不知道球的体积公式,怎么求钢球的体积呢?过了一会儿,有学生提出:虽然我们不能直接求出球的体积,但是我们可以先求出水的体积。只要把玻璃容器里水面上升的体积求出来,球的体积不就求出了。这时,我问学生:“那水面上升的体积怎么求呢?”经过思考,有学生认为,可以先测出水面上升的高度,再从玻璃容器内部量出长和宽后计算体积。正当学生为此感到高兴时,我又问:“那水面上升的高度怎么测呢?”有学生马上回答道:“先记录好原先玻璃容器里水面的高度,再测一下钢球放入后水面的高度,然后把这两个高度减一减即可。”通过上述教学,教师巧妙地把数学学习内容转换成一连串具有潜在意义的问题,不仅激发了学生探求的欲望,还提高了学生分析问题、解决问题的能力,同时又训练了学生思维的灵活性。
二、创设探究情境,训练思维的深刻性
小学生在思考问题时,经常会被表面现象所迷惑,而不能抓住事物的内在规律和本质。为了克服思维的表面性、绝对化与不求甚解的毛病,教师可创设探究情境,让学生的思维过程得以充分暴露,使思维深刻。
例如在教学《克与千克》一课时,我创设了一个“比轻重”的情境,先让学生看两袋苹果,说说哪一袋苹果重。因为这两袋苹果明显一袋多、一袋少,所以学生仅凭“用眼看”就能轻而易举地区分出来。接着我又拿出两包看起来差不多大小的饼干,让学生猜一猜哪包饼干重。学生们在猜测以后,我让大家想办法验证自己的猜想,于是同学们便想到了“用手掂”的方法。通过掂一掂,比较出了哪包饼干重。此时我追问学生:那每包饼干到底有多重?我们怎么才能知道呢?同学们结合自己的生活经验,很自然地想到了“用秤称”。通过本节课创设“比轻重”这样一个情境,使学生逐步体会出比较物体的轻重可以通过看——掂——称这样层层深入,让学生在一步步的深入中对克和千克进行感知,从而让学生在快乐学习的同时,达到培养思维深刻性的目的。
三、创设质疑情境,训练思维的变通性
“任何卓有成效的发明创造都是从疑问开始的”。疑问是思维的源泉,是创新的基石。教学中,教师要努力创设情境,为学生提供质疑的机会,让学生在思维中提问,在提问中思维,从而使学生思维的变通性得到较好地发展。
例如,在教学《分数的初步认识》一课时,我创设了这样一个情境,让学生表示下面这个正方形的1/4?
题目一出来,同学们就立刻展开了讨论,没过多久,全班出现了好几种表示方法,如:
这时,我问学生:还有别的表示方法吗?同学们一听,还有别的表示方法,有的表示怀疑,有的则试图寻找其它的表示方法,过了一会儿,有学生站起来说:“只要固定正方形对角线的交点,旋转两条对角线就能把这个正方形平均分成四份。”话音刚落,很多同学认为这是不可能的,于是我马上因势利导,让学生按他的方法去试一试。结果大家发现试下来的结论居然与这位同学所说的完全一样。通过上述教学,不仅激发了学生的质疑情绪,而且还帮助学生拨开疑云,疏通障碍,变阻为通,真是一举多得。
四、创设辨析情境,训练思维的批判性
思维的批判性是指能够根据事实和情况,善于独立思考,善于发现问题、分析问题和解决问题,能对自己和别人的思维过程及结论进行评价。教师在教学中,应该联系学生实际,对学生中存在的一些片面甚至错误的认识,组织学生进行讨论,开展适当的争辩活动,澄清学生的模糊认识,从而训练学生思维的批判性。
例如在教学《复合应用题》时,我向学生提出了这样一个问题,学校买来180米电线,第一次用去60米,第二次用去85米,剩下的电线比买来时短了多少米?问题一提出,大部分学生都认为要求剩下的电线比买来时短多少米,需要先求出剩下的电线有多少米,然后再利用买来的电线长度减去用去的电线长度来求剩下的电线比买来时短多少米,即180-60-85=35(米),180-35=145(米)。不过,有一学生却不这么认为,他说:“解答此题不需要这么麻烦,只要将第一次用去的60米与第二次用去的85米相加就可以了。”听到这话,教室里一下子炸开了花。有的说,没有把给的条件都用上求得的结论是不正确的;有的说,要求“剩下的电线比买来时短多少米”应该最后是求两数相减,而现在最后求的是两数相加,结论肯定是错误的;还有的说,问题要求相差多少米,而现在却求了用去多少米,求的与问的根本不统一,所求的结论一定是不对的。就这样,同学们你一言我一语交流得非常热烈,过了好长时间,大家的目光才渐渐地聚集到了我这里。这时,我对全班学生说:“大家的解法都对。” 学生们很惊讶,为什么那位学生的解法也对呢?同学们很困惑,于是我马上借助下图引导学生分析此题。
通过上图,我们可以清楚地看到,剩下的电线比买来时短的米数,其实就是第一、二次用去的米数和。至此学生们才明白原来判断一道应用题的解法正确与否不应以某个字或某句话作为依据,而应该根据题中的数量关系。通过上述教学,不仅使学生明白了道理,消除了头脑中的模糊概念,而且还达到了培养学生思维批判性的目的。
五、创设活动情境,训练思维的创造性
教师在数学教学中,应确立“活动教学”的新理念,创设活动化的学习情境。如,可根据教学内容组织学生进行适当地操作,让学生“做中学”、“玩中学”、“学中创”,可取得较好的教学效果。
例如在教学《平均分》这一概念时,我就创设了这样一个活动化的学习情境,我先发给每个学生10只小圆片,要求 “试”着分成两堆,没想到这一试收获还真不少。大多数学生对尚未教学的“平均分”知识,已有一定的感性经验,全班学生中虽然有15%是非平均的分法,但有85%的学生已经应用了平均分的意义,即分成的两堆数量同样多。于是我马上就平均分的学生进行分析,结果发现等分的思路主要有以下三种:第一种是一个一个分,或两个两个、三个三个地分,结果每堆各5个;第二种是根据估计每堆可以分3个,结果剩下4个,接着每堆再分2个,得到的结果也是每堆5个;第三种是从10个圆片中取出4个作为一堆,这时剩下的另一堆是6个,通过比较6个比4个多2个,则从多的一堆中取出1个,补到少的一堆中去。这些别具一格的“平均分”方法,只有在学生动手的前提下,结合合理的想象所得到的特殊收获。这样的操作活动,学生不但学到了“平均分”的概念,并且进一步丰富和发展了“平均数”的内涵。同时,学生的创造性思维在这一情境中也得到了充分的发展。
总之,学生思维能力的培养是一个长期的复杂过程,需要我们数学教师在日常的教学中精心设计,适时组织,充分发扬教学民主,像春雨润物般的渗透,才能取得一些成效。 |